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Probability Tools and Techniques

Chapter 2

2.1 Introduction

Probability Tools and Techniques

2-1

2.1.1 Chapter Content

This chapter presents basic probability tools and techniques, drawing heavily from
McCormick [MCC81] for the basic probability theory (up to Section 2.9). Alan Monier
guided the bulk of the remainder.

2.1.2 Learning Outcomes

The objective of this chapter is to provide the basic probability tools and techniques
needed to explore reactor safety analysis. This will allow the quantification ofthe
concepts and designs developed in the rest of the course.

The overall learning outcomes for this chapter are as follows:
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Objective 2.1 The student should be able to identify the terms and symbols used in
probability calculations.

Condition Closed book written examination.

Standard 100% on key terms and symbols.

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evalu
ation

Weight a a
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Objective 2.2 The student should be able to recall typical values and units of
parameters.

Condition Closed book written or oral examination.

Standard 100% on key terms and symbols.

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evalu
ation

Weight a
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Objective 2.3 The student should be able to analyse simple systems and compute
unavailabilities.

Condition Open book written examination.

Standard 75%.

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evalu
ation

Weight a a a a
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2.1.3 The Chapter Layout

First, the general rules of probability (AND and OR rules) and Bayes Equation are
introduced but, for the most part in this course, we will rely on the approximations of
rare and independent events.

Time dependent systems are addressed, covering failure rates, repair, continuous
operation, and demand systems.

We encounter a simple shutdown system, illustrating the concept of testing to increase
system availability.

We also consider the basic '2 out of 3' system so prevalent in reactor safety systems.

2-5

By way of contrast to the shutdown system, which is a demand type system, the
emergency core cooling system is also examined as an example ofa demand system with
a mission time.
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2.2 Definitions and Rules

If event A occurs x times out of n repeated experiments then:
P(A)=probability of event A

=lim eX)n..... CX) .

n

2-6

(1)

(Axiom #1) o s peA) s 1 (2)

(Axiom #2):
-

P(A)+P(A) = 1 where A means "not A". (3)

The intersection of2 events, Al and A2, is denoted:
Al nA2 or A 1A2 or Al AND A2

(This is not Al times A 2)

The conditional probability P (AI IA2) means the probability of Al given that A2 has
occurred.

(4)
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(Axiom#3)

Probability Tools and Techniques

The product rule for probabilities states:
peAl A2) = P(A]IA2) P(A2)

= P(A2IA]) peAl)

2-7

(5)

For example, if Al is the probability that part 1 fails and A2 is the probability that part 2
fails then

PCA] A2) = probability that both 1 and 2 fail
= probability that 2 fails and (part 1 fails given that part 2 fails).

If the failures are independent,
P(A2 IAI) = P(A2)·

This can be extended to give:
P(A]A2····AN) = P(A])P(A2IAl)....P(ANIAlA2....AN_1) (6)

If events are independent:
P(A1A2.. ··AN) = P(A1)P(A2)....P(AN) (7)
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The union of two events is denoted:
Al U A 2 or Al +Az

We have:

In general:
N N-I N

P(AI +A2+···+AN) = LP(AN) - L L P(AnAm)
n=1 n=1 m=n+1

±... +( -It-Ip(AIAz--.AN)

If events are independent:
N

1 - P(AI +A2 +····+AN) =II [l-P(AN)]
n=1

Rare events approximation (and independent)
N

P(AI +A2 + ... AN) '" L P(AN)
n=1

and we previously had (equation 7):
P(AIA 2....A N) = P(AI)P(A2)· .. ··P(AN)

2-8

(8)

(9)

(10)

(11)

(12)

(13)
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2.3 The Bayes Equation

\,...

2-9

Given an event or hypothesis, B, and An mutually exclusive events or hypotheses (n==l,
2....N):

P(AnB) = P(An) P(B1An) = P(B)P(AnIB)

:. peA IB) = peA ) [P(BIAn)]
n n PCB)

Now, since the events, An are mutually exclusive:
N

L P(AnIB) = 1
n=l

Multiplying by PCB):

(14)

(15)

(16)
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N

PCB) == L PCB) P(AnIB)
n;1
N

= L P(AnB)
n;]

N

= L P(An) P(BIAn)
n;1

(]7)

Substituting 17 into 15:

(18)N

L P(Am) P(BIAm)
m;]

So if we know P(BI~) then we can calculate P(~ IB). This is an important result
because it enables you to "reverse" the order of information. This is especially useful for
analyzing rare events.
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2.4 Example - Core Monitoring System

2-11

A Core Monitoring System (CMS) is composed of the 3 sensors as shown in figure 2.1.

We know from the manufacturer the failure probabilities over the period oftime under
consideration (this is the axiomatic data):

P(IC) = 0.02
peTS) = 0.04
PCPS) = 0.01

Testing of the installed system shows that P(CMSIIC) = 0.10 (i.e., when IC fails, the
CMS fails 10% ofthe time.

Also P(CMSITS) = 0.15
P(CMSIPS) = 0.10

What is the chance that a failed CMS is caused by a failed TS?
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Solution:

P(TSICMS)= peTS) P(CMSITS)
P(IC) P(CMS[IC) + peTS) P(CMSITS) + PCPS) P(CMITS)

O.04xO.015= -----
0.02 x 0.10 + 0.04 x 0.15 + 0.01 x 0.10

= 0.667

Comment:

(19)

(20)

Based on the axiomatic data P(IC), peTS) & PCPS) one would expect the TS to be a
problem in proportion to its failure rate relative to the other devices i.e.,

0.04 4

0.02+0.04+0.01 7

So, in the above example, the testing data, P(B)[An) is used to modify the axiomatic data
to yield a revised relative frequency of sensor failure, given a system failure, by P(~IB).

This is called a posterior probability.
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2.5 Failure rate estimation when no failures have occurred

We can use Bayes Equation to glean information from non-events as well.

Consider the case where 4000 fuel shipments have been made with no radioactive
release. Can we determine the probability of release per shipment?

Let B = 4000 shipments with no release
Al = release prob. = 10-3

A2 = release prob. = 10-4

A6 = release prob. = 10-8

2-13
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IfAl were true, thert:

SInce we can assume
shipments are independent,
the probability of a single success is 1-10-3

,

and P(BIAI) is just the intersection of 4000 events.

Likewise we find (as shown in table 2.1):
P(BIA2) = 0.6703
P(BIA3) = 0.9608

2-14

Ifwe know P(AI), ...P(A6) we could calculate P(",IB) or the probability of our statement
An being actually true.

Ifwe assume P(~) = lIN = 1/6, we find that P(AIIB) = 0.04, ie, it is not too likely.

Ifwe use a more likely P(An) we see that P(AnIB) is adjusted downwards and we
conclude that the failure rate is significantly less than 10-3

•
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Table 2.1 Bayesian calculations for the example [Source: MCC8!. page 19]

n

1 2 3 4 5 6

A. 10-3 10-4 10-:; 10-6 10-7 IO-K

P(BIA.) 0.0183 0.6703 0.9608 0.9960 0.9996 0.99996

Uniform prior
P(A.) 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

P(A.IE) 0.004 0.1443 0.2068 0.2144 0.2152 0.2153

Nonuniform prior"
PtA.) 0.01 0.2 0.4 0.3 0.08 0.01

p(A"IB) 0.0002 0.1475 0.4228 0.3287 0.0880 0.0110

• From S. Kaplan and B. J. Ganlck. On the use of a Bayesian reasoning in safety and
reliability decisions-three examples. Nucl. Technol. 44,231 (1979).

2-15
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2.6 Probability Distributions
~

x

P(X) = J p(x)dx

= cumulative probability
= P(x < X)

where p(x) == probability density function.

There are two types of systems:

1) Those that operate on demand (ie, safety systems)

2) Those that operate continuously (ie, process systems)

2-16

(21)
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2.7 Demand Systems

We define:

D =dh demandn

P(Dn) = probability of success on demand n

-
P(D n) = probability of failure on demand n

Wn = system works for each demand up to and including demand n.
:. P(Wn_j) = P(D j D2 D 3 '" Dn_j)

- -
P(Dn Wn_) = P(DnIWn_j) P(\Vn_l )

So
- -

P(DjD2D3.. ·Di1_j Dn) = P(DnIWn_j) P(Wn_j)

= P (DnIDjD2...Dn_j) . P (Dn_jIDjD2...Dn_2)....P(D2IDj) P(Dj)

2-17

(22)

(23)

(24)
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If all demands are alike and independent, this reduces to:
- - -

P(DjD200oDn_jDn) = P(D) [l-p(D)]n-l

Data for demand failure is often published using the symbol Oct.

Exampk:

P(D) for a switch is 10-4
• What is the probability that the switch fails at the end of3

years when the switch is used 20 times per week?

2-18

(25)
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Solution:
Number of demands = 20x52x3 = 3120.

-

P(D IW ) 10 -4 (1-10-4)3119:. 3120 3119 -
= 0.732 X 10--4.

This is the same as any single specified failure, say on demand 25 or 87.

If the switch were repaired immediately upon any failure, then the probability that it
would fail once at anytime within the 3 years is just 3120 times the probability that it
would fail at any specified demand, i.e., 3120 x 0.732 x 10-4 = 0.228.

2-19

(26)
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2.8 Failure Dynamics

Failures are not static events. Let's look at failure dynamics.
f(t)dt == probability of failure in the interval dt at time t

F(t) == accumulated failure probability
t

==J f(e)dt!
o

Assuming that the device eventually fails the reliability, R(t) is defined as
R(t) == 1 - F(t)

00 t

== Jf(t !)dt! -!f(e)dt!
o 0

==J f(t)dt!
t

'0-
2-20

(27)

(28)
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So,

f(t) = _ dR(t) = dF(t)
dt dt

If A(t) dt = prob. of failure at time t given successful operation up to time t (defined as
the conditional failure rate), then:

f(t)dt = A(t) dt R(t)
or f(t) = A(t) R(t)

dR

dt

dR
-A(t) R(t).. - =

dt

dR - A(t) dt.. - =
R

2-21

(29)

(30)

(31)

(32)
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. .
Rr(t) dR __
. R IA(t)dt = In Ret) - In R(O)

R(O)

Since R(O) = 1,
t

R(t) = exp - JA(t)dt
o

If Ais constant, (ie, random failures):
R(t) = e -At.

Given A(t), we can determine everything else.

See table 2.2 for a summary of commonly used terms and relationships.

See figure 2.2 for typical AVs 1.

2-22

(33)

(34)

(35)

y,jg D:I1CACH\TIlli-rsIIOvcrbeld\ovcr2.\Ol'8 Jlnulry 24, 199& IJ: 13



Probability Tools and Techniques

Table 2.2 A swnmary of equations relatinl'. A(t), R(t), F(t), and f(t)

'MIrd description Symbol = First Second Third
relationship

-
relationship - relationship

Hazard rate AU) -(fiR) dRldt l(t)/( I - F(t» 1(1)1R(t)

Reliability R(t) r'" I(r) dr I - F(t) exp [ - Jot I..{r) dr)

Cumulative failure F(t) fot I(r) dr I - R(t) 1 - exp [- t\(r) dr)
probability

Pailure probability I(t) dF(t)ldt -dR(t)ldt A(t)R(t)
density

2-23
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Mean time to failure (MTTF)

2-24

ft f(t)dt
oMTTF = ---

ff(t)dt
o

= ft f(t)dt
o

(36)

Availabili~ A(t)

= ft A eAt dt

o
1

A

(assuming A = random)

If a device undergoes repair then R(t) - A(t)
R(t) ~ A(t) ~ 1.

A(t) = R(t) for devices that are not repaired.

(37)
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2.9 Continuous operation with Repair

Assume random failures. This implies

A= constant

R(t) = e-A(= reliability, illustrated in figure 2.3.

Failure probability = F(t) == 1 - R(t)
== 1 -eAt, illustrated in figure 2.4.

Let repair occur at time interval, 1". Then F(t) is a sawtooth as illustrated in figure 2.5.

2-25
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If'r « Athen

2-26

F(t)=l ­

'" At

A2t 2
(1 - At + -- ...)

2
for t < 'r in any interval

and t is measured the time of lastrepair.

(38)

:.<F> =
A'r

2
(39)

This is a useful rule of thumb but you can always calculate accurately from:
1:

1: e -At I
fF(t)dt

1:

t I +
0

A
<F> 0 0= =

1: 'r
fdt (40)

0

A'r + e -h-1
=

A'r
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A common design task is to design a system (composed of components that have a
- -

known failure rate) to meet some target unavailability A (A = F) .

Given a design, the repair interval is the remaining variable.

2-27

A frequent repair cycle (low 't") gives a low A ,but such frequent repair may be

untenable due to excessive cost on downtime or even hazard to repair personnel. In such
a situation, alternative designs would have to be considered.

Often, repair may not be required in order to return F to O.

It may be sufficient to simply test the components to ensure that they are available.

This is usually the case for "demand" systems.
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2.10 Example - Shutdown System

2-28

Consider the case of a single shutoff rod (SOR) for a reactor. Given a failure rate based
on previous experience of A= 0.002/year and a required unavailability of::; 10'3, what is
the required test period, t:?

To meet the A target of 10-3
,

A '" At: = 0.001 't
2

(41)

't -<
10-3

O.OOl/year
= 1 year (42)

This is certainly a reasonable test period. But ifthe A target were 10-6 or if the failure

rate were 2 / year, then the required test period would be 10-3 years or about 3 times per
day! This would not be reasonable.

A more realistic shutdown system would have a bank of, say, 6 SORs, as illustrated in
figure 2.6.
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When the shutdown system (SDS) is activated some, all or none of the rods drop into the
core. The possible events are enumerated in table 2.3.

Table 2.3 SDS event possibilities

Event # rods # rods fail to
drop drop

EO 6 0

El 5 1

E2 4 2

E3 3 3

E4 2 4

E5 1 5

E6 0 6
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Assuming that the rods fail independently and that the failure rate is A., then the
probability of a given rod failing on average is:

<F> :::: A T (== p for conciseness)
2

2-30

(43)

as before. And the success probability is I-p. In general the probability for event Eb k =

1, 2... n is

peEk) == N! (1 p)N-L. k
(N -k)1k1 - p

(44)

N'The factor . k! gives the number of possible ways for that event to happen, the
(N -k )!

factor (l_p)N-k is the probability that N-k rods all successfully drop and the factor pk is

the probability that k all fail to drop.
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Thus:

P(Eo) = (l_p)6
peEl) = 6(l-p)Sp
P(E2) = 15 (l_p)4p2

P(E3) = 20 (l-p)3p3

P(E4) = 151_p)2p4

peEs) = 6(I_p)pS
P(E6) = p6

Since these are the only possibilities, they sum to unity, i,e:
N

L peEk) = 1
k=O

2-31

(46)
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Normally, there are more SOR's than necessary for reactor shutdown and it is sufficient
to require that, say, 4 of the 6 rods must drop.

If this were the design criteria, then events Eo, E[ and E2 represent the successful
deployment of the SDS. Events E3 -> E6 represent system failures.

The system unavailability for a 4 out of 6 criterion is thus:
N 2

A = L peEk) = 1 - L peEk)
k;3 k;O

= 1 - (1-p)6 - 6(1_p)5p - 15(l-p)4p 2

A:r
where p = -

2

(47)

-
Given a Aand an assumed 1:, the A is calculated and compared to the required

unavailability.

The 1: is then adjusted until the A target (say 10-3
) is met. For a Aof, say O.02/year, we

find that A is 2 xlO-5 for a 1: of 1 year. Thus testing every year is more than enough for

this design to meet the unavailability target.



'-

Probability Tools and Techniques 2-33

The above assumes that, when testing occurs, any deficiencies are immediately and
instantaneously repaired so that the "clock" is effectively reset and the failure probability
is reset to zero.

However, repairs cannot usually be made right away. The plant will have to operate with
less than 6 SORs available and the unavailability target must still be met.

For instance, assume that the operator finds that one rod fails the test and has to be
declared "out of service". The above calculation needs to be repeated based on a 4 out of
5 criterion rather than a 4 out of 6.

Thus:

= 5! (1)5 5! 5
A 1 - 51O! -p - 4!l! (l-p)p

= 1- (1-p)5 - 5(l_p)4 P

== A l (to denote unavailability with 1 rod out of service)

- -
A l' of 1 year gives Al = 0.00098, whichjJJst meets the A target of 10-3

•

(48)
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We continue in this way by also considering the case where 2 rods fail their test and are
taken out of service.

Now the SDS must operate on a 4 out of 4 basis. All remaining rods must drop. In this
case the unavailability is

A 2 = 1 - (1_p)4

For -r = 1 year, we find A2 = 0.039 and the operator must step up the testing program

dramatically (-r = 0.02 years or once every week) to achieve A = 10-3 or better.
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To summarize:

Table 2.4 SDS summary

,
\...

2-35

Case - 1: Operator ActionA k (per year)

orods fail test 2 x 10-5 1 None

1 rod fail test 0.00098 1 Repair rod

2 rods fail test .0008 .02 Repair rods
Test every week until rods are
repaired

3 or more rods 1 Shutdown since need at least 4 rods
fail test available
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2.11 Fault Tree Example

A more systematic way to carry out the same analysis as per the previous section is to
develop a fault tree.

2-36

These modes are automatic failures since at
least 4 rods are required.

We start by identifying the end result (SDSI fails to deploy) and itemize all the ways that
this can happen.

In this case, SDS I can fail in anyone of its 7 modes:
Event Eo 0 rods out of service
Event E1 1 rods out of service
Event E1. 2 rods out of service
Event E3 3 rods out of service
Event E4 4 rods out of service
Event Es 5 rods out of service
Event E6 6 rods out of service
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All these modes are mutually exclusive so we OR their probabilities of failures. The
fault tree is shown in figure 2.7. We expand each option until we can no longer
decompose the event or we arrive at a point where we know the probability of failure.

For the case of 0 rods out of service, the probability of being in that mode is (l_p)6 as
before.

Within that mode, failure occurs if either:
6 rods fail to drop [probability of this failure mode = p6]
5 rods fail to drop [probability of this failure mode = 6 (l-p) p5]
4 rods fail to drop [probability of this failure mode = 15 (l_p)2 p4]
3 rods fail to drop.[probability of this failure mode = 20 (l_p)3 p3]

These events are mutually exclusive.

Thus that portion of the tree is expanded as shown.
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The unavailability of SDS 1 while in the Eo mode is simply:

Ao = L failure modes when 0 rods are out of service

= p6 + 6(l_p)p5 + 15(1-pip 4 + 20(1_p)3p 3
A:I:

where p = -
2

The contribution to unavailability of the system for this segment of the fault tree is:

A (no rods out of service) = (1-p)6 Ao

The other modes can be expanded in like fashion to give:

Ai = )-.: failure modes when 1 rod is out of service

= p5 + 5(1-p)p4 + lO(1-p)2p 3 + lO(1-p)3p 2

A2 = L failure modes when 2 rods are out of service

= p 4 + 4(1-p)p 3 + 2(1-pip 2 + 4(1-p)3p

2-38

(49)

(50)

(51)

(52)
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Finally, the total system unavailability is:
A == (l_p)6 A

O
+ 6(l-p)5p AI + 15(l-p)4p 2 A

2

Note that the system unavailability does not include the unavailability for modes 3
through 6 since these are modes where the unavailability is known.

2-39

(53)

In those cases, the plant would be shut down and put in a fail safe mode by other means.
Thus, these modes do not contribute to operating unavailability.

Also note that, in contrast to the example developed in the previous section, the above is
based on a common 't. In the previous example 't was varied within each mode to meet
the target unavailability so that:

- - -
A == Ao == AI == A2 == Atarget (54)
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2.12 2/3 Logic Example

2-40

Figure 2.8 illustrates a relay setup that operates on a 2 out of 3 logic, or 2/3 logic. There
are 3 physical relays, D, E and F but each relay has two sets of terminal pairs, allowing
them to be connected as shown. The relays are normally open but close when a signal
(D, E or F) from their respective channels are received. If any two channels are
activated, then the circuit is completed and current can flow between top and bottom. If
the sub-circuit is in a safety system circuit, the safety system is activated when two or
more of channels D, E and F are TRUE.

If the probability of failure of any relay is p, what is the overall unavailability of the sub­
circuit?
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This situation is, in fact, completely similar to the SOR case previously examined. Here
success is defined as 2 out of 3 events occurring. The unit fails if 3 relays fail or if 2
relays fail. All other states constitute a working sub-syst~m. This is summarized in table
2.5. All the states are mutually exclusive.

Table 2.5 Possible sub-system states and probabilities

Condition of relays DEF Condition of sub-system Probability
(l = OK,
o= FAILED)

000 0 p3

001 0 p2 (l-p)

010 0 p2 (l-p)

011 1 P (1_p)2

100 0 p2 (l-p)

101 1 P (l-pf

~g D:\TEACKlTh.j.rsl\OverbCld\over2_~8Janllu)' 24,1991 13:]5
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The unavailability, then of the unit is simply the sum ofthe failure probabilities:
3! 3 3! 2

A = 3' O! P + 2' l! P (l-p)

= P 3 + 3 p 2 (l-p)

In general, for a M out ofN system:

A = ~ N! (l_p)N-~ k
k=M (N -k)!k!

= 1 _ k~l N! (1 )N-k... k

to (N -k)!k! -p 1-'

2-42
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2.13 Ladder Logic

Consider now the system shown in Figure 2.9(a) where the relays D, E and F have two
sets of terminals just like the previous example.

In the standby or ready state, the relays are energized closed, providing a current path
from top to bottom.

When the system "fires", ie, when signals are received at the relays, the current path is
broken if at least 2 relays change state (go from closed to open).

Failure of a component (a relay in this case) occurs when it fails to change state as
requested.

The failure modes are the same as for the previous example and are given in table 2.5.

2-43

We conclude that the system depicted by figure 2.9 is entirely equivalent to that of figure
2.8.
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Since safety systems are generally wired so that a power failure will invoke the safety
system, the ready state has the relays powered closed and the relays open when power is
lost.

The relays are designed to fail open, thereby tending to fire the safety system if the safety
system logic or components fail.

The MNR safety trip signals, for instance, are all wired in series and anyone signal
breaks the current to the magnetic clutches holding up the shutoff rods.
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In actual systems, the relays of the ladder shown in figure 2.9 do not have dual terminals.
Rather, separate relays are used, depicted as D1 , D2, etc. in figure 2.10.

Failure of the system due to relay failures now occurs when all 3 ladder steps fail, ie,
when step I fails AND step 2 fails AND step 3 fails.

The system will succeed if any step succeeds in breaking the circuit (assuming signals at
all 3 channels D, E and F).

Step 1 fails if either D1 or F2 fails to switch state upon demand (from closed to open).

The fault tree is sho,,"TI in figure 2.10. The system unavailability is thus:
- - - - ---
A = (D1 +F2).(E1 +D2).(F1 +E2)

= (2p)3 = 8p 3
(57)

if all relays fail with probability p. Since p«l, the unavailability of this circuit with 6
relays is significantly lower than the previous example which uses 3 relays.

We'll see in Chapter 5 how we can combine the relay fault tree with the SOR fault tree to
give the full fault tree for a shutdown system.
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2.14 Unavailability Targets

2-46

The unavailability of a system at any given time is, in general, a function of the system
configuration. Valves, switches, etc., fail from time to time. System configuration is a
function of time. Hence, unavailability is a function of time, as illustrated in figure 2·1.

Safety targets can be defined in terms of some average unavailability or in terms of an
instantaneous unavailability.

In the later case, the operating station would need to continuously monitor the plant
status in order to continuously· calculate the station "risk" level. This is likened to having
a "risk meter" for the station. Station personnel would respond to equipment failures that
lead to a rise in station risk by fixing equipment, maintaining equipment or invoking
standby or alternate systems.

Working to an average unavailability, on the other hand, does not require such a
vigilance; instantaneous risk can be permitted to rise in the short term as long as the
averages are achieved. This is more workable but less precise in maintaining control of
station risk.
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2.15 Dormant vs active systems

So far we have focussed on systems that are normally dOlmant and are required to
operate on demand. Safety systems generally fall into this category.

However, some sy~tems, like the Emergency Core Cooling System (ECCS), are required
to activate on demand and to continue to function for some defined mission time.

The normal response of the ECC to a Heat Transport System (HTS) break (temled a Loss
of Coolant Accident or LOCA) is for the ECC to detect the event and initiate the
injection of high pressure (HP) cooling water.

Then, after the HTS have depressurized, medium pressure and finally low pressure water
is injected.

The HP water is supplied via a water supplied that is pressurized by gas cylinders.

Medium pressure cooling water is supplied from the dousing water via ECC pumps and
low pressure water is retrieved from the sumps.
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For CANDU reactors a 3 month mission time has been set.

The ECCS is consequently divided into two separate fault trees for the purposes of
analysis:

Dormant ECC and Long Term ECC (designated DECC and LTECC respectively).

2-48

The DECC fault tree focusses on failure to detect the LOCA event, failure to initiate high
pressure (HP) cooling water, failure to distribute the flow, and failure to provide medium
and low pressure water.

The LTECC fault tree focusses on the failure to provide long term low pressure cooling
due to pump failure, valve failure, flow blockage and loss of coolant supply.

ECC is discussed in more detail in Chapter 7.

Before we get into the specifics of applications, we develop safety criteria and design
basis accidents in the next two chapters.
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2.16 Exercises

1. For the example fault tree of Section 2.11, calculate Ao from the success modes.
Which way is better
a. in the 4/6 case
b. in the 26/28 case?

2-49

2. A hom on a car operates on demand 99.96% ofthe time. Consider each event
independent from all others. How many times would you expect to be able to honk
the hom with a 50% probability ofnot having a single failure?

3. A light bulb has a A.(t) = 5x10 -7 t, where t is the time in days.
a. What is the MTTF for the bulb?
b. What is the MTTF if A.(t) = 5x10-7 t?
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ion Chamber (IC)

Reactor

'--=== ---------L _

Figure 2.1 Core Monitoring System

Temperature Sensor (TS)
----~--,

Pressure Sensor (PS)
.... :===~J
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Figure 2.2 Time dependence ofconditional failure (hazard)rate [Source: MCC81, page 26]
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Figure 2.3 Reliability vs. Time
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Figure 2.4 Failure probability vs. Time
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Figure 2.5 Failure probability with repair
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Figure 2.6 Simple SDS

o
o
o

o
o
o
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SDS1 fails
in EO mode

2-54

SDS1 fails
to deploy

r
6 rods Srods 4 rods 3 rods 4 rods
fail to fail 10 fail to fail to fail to
dro~ drop drop drop drop

I

I I I
3 rods 2 rods 1 rods
fail to fail to fail to
drop drop drop

Figure 2.7 SDS I fault tree

I
CradS

4 rods 3 rods 2 rods
fail to fail to fail to fail to
drop drop drop drop
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E~

Figure 2.8 '2 out of3' Logic - Relay example
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F

D

E

Figure 2.9 '2 out of 3' Ladder Logic
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E1~ ~ 02 02 second step
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F1~ ~ E2 F1~ :;§l E2 third step
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Figure 2.10 '2 out of3' Ladder Logic - Separate Relays
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Figure 2.11 Fault Tree for the Ladder Logic Relays
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<A> in the time interval
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Figure 2.12 Time dependent unavailability
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